

Power Queen

Q

www.ipowerqueen.com

Product Manual

Lithium Iron Phosphate (LiFePO₄) Battery

(50A BMS)

PRODUCT OVERVIEW

12.8V 50AH BATTERY

Operating Voltage: 12.8V

Charging Voltage: 14.4±0.2V

Recommended Charge Current: 10A (0.2C)

Max. Continuous Discharge Current: 50A

Max. Continuous Output Power: 640W

ADDITIONAL COMPONENTS

M8- 35/64" (14MM) TERMINAL BOLTS

 \bullet Recommended terminal torque: 106.2 to 123.9 inch·lbs / 12 to 14 N·m.

The terminal bolts are used to secure multiple cable lugs to a single battery terminal. The bolts can be replaced with M8 bolts of other lengths based on actual needs.

INSULATING CAPS FOR BOLTS

Cover the battery with the insulating caps after tightening the bolts. If the cap melts, stop using the battery and reach out to service@ipowerqueen.com for further analysis.

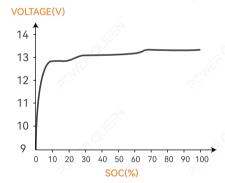
BATTERY

PARAMETERS

LiFePO4
12.8V
50Ah
640Wh
≤40mΩ
≥4000 times
50A
CC/CV
14.4±0.2V
10A (0.2C)
50A
50A
150A@ 1 Second
640W

Item	Parameter
Dimension	L7.68*W6.54*H6.77 inch
Dimension	L195*W166*H172 mm
Housing Material	ABS
Protection Class	IP65
Recommended Terminal Torque	106.2 to 123.9 inch·lbs / 12 to 14 N·m
A COLOR	Charge: 0°C to 50°C / 32°F to 113°F
Temperature Range	Discharge: -20°C to 60°C / -4°F to 140°F
	Storage: -10°C to 50°C / 14°F to 113°F
2 [©]	₹ [©]

HOW TO ESTIMATE


THE BATTERY CAPACITY

TATE OF CHARGE (SOC)

The battery capacity could be roughly estimated by its **resting voltage (not charging/discharging voltage)**^①.

Since the voltage of each battery is slightly different, and the voltage measurement is affected by the measuring instrument, ambient temperature, etc., **the following parameters are for reference only.** The actual SOC of the battery is based on the discharge capacity under load.

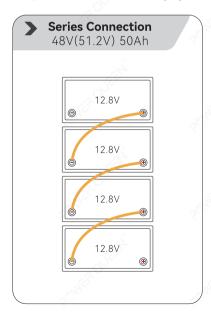
Resting Voltage: The voltage is measured after the battery has been disconnected from the charger and loads with zero current, and left alone for 3 hours.

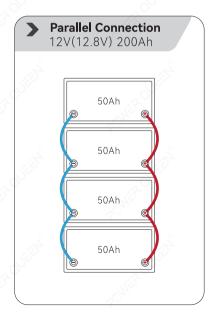
10 to 12 13 to 13.15
12 to 12 1E
13 (0 13.15
13.15 to 13.2
13.3 to 13.33
≥13.33

① Based on the characteristics of LiFePO4 batteries, the voltage measured by all LiFePO4 batteries during charging/discharging is not the real voltage of the battery. Therefore, after charging/discharging and disconnecting the battery from the power source, the voltage of the battery will gradually drop/increase to its real voltage.

CONNECTION

1 THE PREMISE OF CONNECTION


To connect in series or /and parallel, batteries should meet the below conditions:


- a. identical batteries with the same battery capacity (Ah) and BMS (A);
- b. from the same brand (as lithium battery from different brands has their special BMS);
- c. purchased in near time (within one month).

INITIATION FOR SERIES/PARALLEL CONNECTION

Support connecting **up to 16 identical batteries** for up to:

- 4 in series as 48V (51.2V) battery system/
- 4 in parallel as 200Ah battery system.

WHAT TO DO WHEN THE

BATTERY STOPS WORKING?

When the battery ① can't work; ② can't be charged; ③ voltage < 9V, it has 85% chances that BMS has shut it off for protection, and you could try one of below ways to activate the battery.

† GENERAL STEPS

If the BMS has cut off the battery for protection, follow the below steps to activate it.

> Step①

Cut off all the connections from the battery.

> Step2

Leave the battery aside for 30mins.

Then the battery will automatically recover itself to normal voltage (>10V) and can be used after fully charged.

If the battery is unable to recover itself after the above steps, please try activating by **ONE OF THE BELOW TWO METHODS**.

After activated (voltage > 10V) and fully charged by the normal charging method, it can be used normally.

➤ Method①

Use a **charger with lithium battery activation function** to fully charge the battery.

➤ Method②

Connect **a controller** that supports 12V LiFePO4 battery charging to charge the battery for 3~10s in sunny daytime.

POWER QUEEN®

Shenzhen Lizu Time Technology Co., Ltd